

Filip Janku, Ben Legendre, Katherine Richardson, Gerald S. Falchook, Aung Naing, Veronica R. Holley, David S. Hong, Ralph G. Zinner, Siging Fu, Apostolia M. Tsimberidou, Vivek Subbiah, Daniel D. Karp, Sarina A. Piha-Paul, Jennifer J. Wheler, Vanda M. Stepanek, Goran Cabrilo, Rajyalakshmi Luthra, Funda Meric-Bernstam, Amy Kruempel, Jaclyn Pope, Courtney Cubrich, Grant Wu, Yanggu Shi, Marcia Lewis, Razelle Kurzrock

Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Transgenomic Inc., Omaha, NE; UCSD Moores Cancer Center, La Jolla, CA

BACKGROUND

> Oncogenic mutations confer a survival and growth advantage to cancer cells

> Identifying oncogenic mutations in cancer can provide druggable targets for cancer therapies

➢Plasma cell-free (cf) DNA and circulating tumor cells (CTC) in individuals with cancer offers an easily obtainable. low-risk. and inexpensive source of material for mutation analysis

> Longitudinal assessment of cfDNA and CTC can be used for monitoring of molecular changes throughout cancer therapy.

METHODS

> Patients with advanced cancers, who were previously tested for *BRAF* V600 (30), *KRAS* G12/G13 (28), or both mutations (1) in the tumor samples (primary or metastatic) in a CLIA-certified laboratory during their clinical care were prospectively enrolled

ScreenCell Device for CTC Collection

METHODS

DNA from plasma (3-4ml) and CTC (7.5ml of blood) from patients with advanced cancers who progressed on systemic therapy were tested for BRAF V600 and KRAS G12 and G13 mutations using the ICE-COLD-PCR platform

> ICE COLD-PCR, "Improved and Complete Enrichment COamplification at Lower Denaturation" selectively amplifies mutant DNA by exploiting differences in denaturation temperatures between mutant DNA duplexes and normal "wild-type" DNA duplexes

> KRAS Exon 2 and BRAF Exon 15 ICE COLD- PCR was performed on plasma samples, and from matched CTCs collected using ScreenCell® MB kits (ScreenCell, Sarcelles, France)

> Amplicons were analyzed by Sanger sequencing methods and results were compared to the mutation status of the archival primary or metastatic tumor tissue as determined in a CLIA-certified lab

Standard PCR

All Mela Color Non-Erdhe Appe Papilla Gliob

> All Color Appe Non

BRAF and KRAS Mutation Testing in Cell-Free DNA and Circulating Tumor Cells from Blood of Patients with Metastatic Cancers

RESULTS

Patient Characteristics

BRAF mutations

logy	N (%)	BRAF mutation (CLIA)	<i>BRAF</i> wild-type (CLIA)
	31 (100)	30 (100)	1 (100)
noma	12 (39)	12 (40)	0 (0)
ectal	9 (29)	8 (27)	1 (100)
small cell lung	5 (16)	5 (17)	0 (0)
eim-Chester disease	2 (6)	2 (7)	0 (0)
ndiceal	1 (<5)	1 (<5)	0 (0)
ary thyroid	1 (<5)	1 (<5)	0 (0)
lastoma	1 (<5)	1 (<5)	0 (0)

KRAS mutations

logy	N (%)	KRAS mutation (CLIA)	<i>KRAS</i> wild-type (CLIA)
	29 (100)	26 (100)	3 (100)
ectal	24 (83)	21 (81)	3 (100)
ndiceal	2 (7)	2 (8)	0 (0)
small cell lung	2 (7)	2 (8)	0 (0)
st	1 (<5)	1 (<5)	0 (0)

Concordance Analysis: cfDNA vs. tissue

BRAF mutation CLIA	BRAF wild-type CLIA	
20	0	
10	1	
21 (68%)		
	BRAF mutation CLIA 20 10 21 (

KRAS mutations

ESTED (N=29)	KRAS mutation CLIA	KRAS wild-type CLIA		
RAS mutation PLASMA	22	2		
RAS wild-type PLASMA	4	1		
bserved agreements	23 (79%)			

Concorda	nce	Analysis: CTC	vs. tissue	Longitud	
[E	BRAF mutations			
TESTED (N=31)		BRAF mutation CLIA	BRAF wild-type CLIA	Patient	
BRAF mutation CTC		1	0	Histology	
BRAF wild-type CTC		29	1	HIStology	
Observed agreements		2 (6%)			
				Prior therap	
	k	(RAS mutations		Tissue (CLIA	
l	-			Baseline cfD	
TESTED (N=29)		KRAS mutation CLIA	KRAS wild-type CLIA	Treatment	
KRAS mutation CTC		3	0		
KRAS wild-type CTC		23	3	Response	
Observed agreements		^{6 (21%)} Follow-up c			
				Abbuendedien	

Longitudinal Assessment of cfDNA Mutations

		BRAF mutations				
Patient	1	2	3	4	5	6
Histology	Melanoma	Melanoma	Melanoma	Melanoma	Erdheim- Chester disease	Papillary thyroid cancer
Prior therapy	BRAF inhibitor (response, intolerance)	BRAF inhibitor (response-> PD)	BRAF inhibitor -> BRAF and MET inhibitors (PD)	Ipilimumab and temodar	BRAF inhibitor (intolerance)	Sorafenib
Tissue (CLIA)	BRAF V600E	BRAF V600E	BRAF V600E	BRAF V600E	BRAF V600E	BRAF V600E
Baseline cfDNA	Wild-type	BRAF V600E	BRAF V600E	BRAF V600E	BRAF V600E	BRAF V600E
Treatment	Sirolimus + HCQ	Vemurafenib + chemotherapy	Vemurafenib + chemotherapy	Vemurafenib + chemotherapy	Peg-interferon	Vemurafenib + chemotherapy
Response	PD	SD (minor response)	SD (minor response)	SD (minor response)	SD (minor response)	SD
Follow up cfDNA	V600E	Wild-type	Wild-type	Wild-type	Wild-type	Wild-type

Abbreviations: PD, progressive disease; HCQ, hydroxychloroquine; SD, stable disease

> ICE-COLD PCR detection of actionable mutations in BRAF and KRAS in cfDNA from plasma of patients with advanced cancers is feasible with an acceptable level of concordance with mutation testing of tumor tissue in the CLIA laboratory

> ICE-COLD PCR detection of actionable mutations in BRAF and KRAS in CTC isolated from patients with advanced cancers using the ScreenCell device demonstrates low level of concordance with mutation testing of tumor tissue in the CLIA laboratory

> Longitudinal assessment of cfDNA mutations can demonstrate changes in mutation status during therapy

Making Cancer History®

RESULTS

itudinal Assessment of cfDNA Mutations

	KRAS mutations	5
	1	2
	Appendiceal carcinoma	Colorectal carcinoma
y	Chemotherapy	Chemotherapy
.)	KRAS G13D	KRAS G12D
ONA	Wild-type	Wild-type
	Anti-VEGF	Chemotherapy
	PD	PD
fDNA	KRAS G13D	KRAS G12D

Abbreviations: PD, progressive disease

CONCLUSIONS